Amazon cover image
Image from Amazon.com

Structure from diffraction methods

By: Contributor(s): Material type: TextPublication details: Wiley, 2024.ISBN:
  • 9781118682494
Subject(s): DDC classification:
  • 621.38152 BRU
Online resources: Summary: Inorganic materials show a diverse range of important properties that are desirable for many contemporary, real-world applications. Good examples include recyclable battery cathode materials for energy storage and transport, porous solids for capture and storage of gases and molecular complexes for use in electronic devices. An understanding of the function of these materials is necessary in order to optimise their behaviour for real applications, hence the importance of 'structure–property relationships'. The chapters presented in this volume deal with recent advances in the characterisation of crystalline materials. They include some familiar diffraction methods, thoroughly updated with modern advances. Also included are techniques that can now probe details of the three-dimensional arrangements of atoms in nanocrystalline solids, allowing aspects of disorder to be studied. Small-angle scattering, a technique that is often overlooked, can probe both ordered and disordered structures of materials at longer length scales than those probed by powder diffraction methods. Addressing both physical principals and recent advances in their applications, Structure from Diffraction Methods covers: Powder Diffraction X-Ray and Neutron Single-Crystal Diffraction PDF Analysis of Nanoparticles Electron Crystallography Small-Angle Scattering Ideal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Multi Length-Scale Characterisation), or as an examination of the specific characterisation techniques in their own right, Structure from Diffraction Methods is a valuable addition to the Inorganic Materials Series. Show Less
List(s) this item appears in: IEEE-Wiley Semiconductor Ebooks
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Materials specified URL Status
E- Books IIT Gandhinagar 621.38152 BRU (Browse shelf(Opens below)) IEEE-Wiley Semiconductor Ebooks Link to resource Available

Include Index

Inorganic materials show a diverse range of important properties that are desirable for many contemporary, real-world applications. Good examples include recyclable battery cathode materials for energy storage and transport, porous solids for capture and storage of gases and molecular complexes for use in electronic devices. An understanding of the function of these materials is necessary in order to optimise their behaviour for real applications, hence the importance of 'structure–property relationships'.

The chapters presented in this volume deal with recent advances in the characterisation of crystalline materials. They include some familiar diffraction methods, thoroughly updated with modern advances. Also included are techniques that can now probe details of the three-dimensional arrangements of atoms in nanocrystalline solids, allowing aspects of disorder to be studied. Small-angle scattering, a technique that is often overlooked, can probe both ordered and disordered structures of materials at longer length scales than those probed by powder diffraction methods.

Addressing both physical principals and recent advances in their applications, Structure from Diffraction Methods covers:

Powder Diffraction
X-Ray and Neutron Single-Crystal Diffraction
PDF Analysis of Nanoparticles
Electron Crystallography
Small-Angle Scattering
Ideal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Multi Length-Scale Characterisation), or as an examination of the specific characterisation techniques in their own right, Structure from Diffraction Methods is a valuable addition to the Inorganic Materials Series.

Show Less

There are no comments on this title.

to post a comment.
Share


Copyright ©  2022 IIT Gandhinagar Library. All Rights Reserved.