Interface engineering in organic field-effect transistors
Material type:
TextPublication details: Wiley, 2024ISBN: - 9783527840465
- 621.38152 GUO
| Item type | Current library | Call number | Materials specified | URL | Status | |
|---|---|---|---|---|---|---|
E- Books
|
IIT Gandhinagar | 621.38152 GUO (Browse shelf(Opens below)) | IEEE-Wiley Semiconductor Ebooks | Link to resource | Available |
Browsing IIT Gandhinagar shelves Close shelf browser (Hides shelf browser)
|
|
|
|
|
|
|
||
| 621.38152 GRE Roll-to-roll manufacturing: process elements and recent advances | 621.38152 GRI Passive macromodeling: theory and applications | 621.38152 GUM Properties of interacting low-dimensional systems | 621.38152 GUO Interface engineering in organic field-effect transistors | 621.38152 GUR Surface treatments for biological, chemical and physical applications | 621.38152 GUT Glasses and the glass transition | 621.38152 HAJ Magnetic nanoparticles: synthesis, characterization, and applications |
Interface Engineering in Organic Field-Effect Transistors
Systematic summary of advances in developing effective methodologies of interface engineering in organic field-effect transistors, from models to experimental techniques
Interface Engineering in Organic Field-Effect Transistors covers the state of the art in organic field-effect transistors and reviews charge transport at the interfaces, device design concepts, and device fabrication processes, and gives an outlook on the development of future optoelectronic devices.
This book starts with an overview of the commonly adopted methods to obtain various semiconductor/semiconductor interfaces and charge transport mechanisms at these heterogeneous interfaces. Then, it covers the modification at the semiconductor/electrode interfaces, through which to tune the work function of electrodes as well as reveal charge injection mechanisms at the interfaces.
Charge transport physics at the semiconductor/dielectric interface is discussed in detail. The book describes the remarkable effect of SAM modification on the semiconductor film morphology and thus the electrical performance. In particular, valuable analyses of charge trapping/detrapping engineering at the interface to realize new functions are summarized.
Finally, the sensing mechanisms that occur at the semiconductor/environment interfaces of OFETs and the unique detection methods capable of interfacing organic electronics with biology are discussed.
Specific sample topics covered in Interface Engineering in Organic Field-Effect Transistors include:
Noncovalent modification methods, charge insertion layer at the electrode surface, dielectric surface passivation methods, and covalent modification methods
Charge transport mechanism in bulk semiconductors, influence of additives on materials’ nucleation and morphology, solvent additives, and nucleation agents
Nanoconfinement effect, enhancing the performance through semiconductor heterojunctions, planar bilayer heterostructure, ambipolar charge-transfer complex, and supramolecular arrangement of heterojunctions
Dielectric effect in OFETs, dielectric modification to tune semiconductor morphology, surface energy control, microstructure design, solution shearing, eliminating interfacial traps, and SAM/SiO2 dielectrics
A timely resource providing the latest developments in the field and emphasizing new insights for building reliable organic electronic devices, Interface Engineering in Organic Field-Effect Transistors is essential for researchers, scientists, and other interface-related professionals in the fields of organic electronics, nanoelectronics, surface science, solar cells, and sensors.
There are no comments on this title.