Amazon cover image
Image from Amazon.com

High performance computing for drug discovery and biomedicine

By: Material type: BookBookSeries: Methods in Molecular Biology, 2716Publication details: New York: Humana Press, 2024.Description: xiii, 429p.: col. ill.; hbk.: 25cmISBN:
  • 9781071634486
Subject(s): DDC classification:
  • 570.113 HEI
Summary: This volume explores the application of high-performance computing (HPC) technologies to computational drug discovery (CDD) and biomedicine. The first section collects CDD approaches that, together with HPC, can revolutionize and automate drug discovery process, such as knowledge graphs, natural language processing (NLP), Bayesian optimization, automated virtual screening platforms, alchemical free energy workflows, fragment-molecular orbitals (FMO), HPC-adapted molecular dynamic simulation (MD-HPC), and the potential of cloud computing for drug discovery. The second section delves into computational algorithms and workflows for biomedicine, featuring an HPC framework to assess drug-induced arrhythmic risk, digital patient applications relevant to the clinic, virtual human simulations, cellular and whole-body blood flow modeling for stroke treatments, prediction of the femoral bone strength from CT data, and many more subjects. Written for the highly successful Methods inMolecular Biology series, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step and readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, High Performance Computing for Drug Discovery and Biomedicine allows a diverse audience, including computer scientists, computational and medicinal chemists, biologists, clinicians, pharmacologists and drug designers, to navigate the complex landscape of what is currently possible and to understand the challenges and future directions of HPC-based technologies. https://link.springer.com/book/10.1007/978-1-0716-3449-3
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Books Books IIT Gandhinagar General 570.113 HEI (Browse shelf(Opens below)) 1 Available 034262

This volume explores the application of high-performance computing (HPC) technologies to computational drug discovery (CDD) and biomedicine. The first section collects CDD approaches that, together with HPC, can revolutionize and automate drug discovery process, such as knowledge graphs, natural language processing (NLP), Bayesian optimization, automated virtual screening platforms, alchemical free energy workflows, fragment-molecular orbitals (FMO), HPC-adapted molecular dynamic simulation (MD-HPC), and the potential of cloud computing for drug discovery. The second section delves into computational algorithms and workflows for biomedicine, featuring an HPC framework to assess drug-induced arrhythmic risk, digital patient applications relevant to the clinic, virtual human simulations, cellular and whole-body blood flow modeling for stroke treatments, prediction of the femoral bone strength from CT data, and many more subjects. Written for the highly successful Methods inMolecular Biology series, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step and readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls.

Authoritative and practical, High Performance Computing for Drug Discovery and Biomedicine allows a diverse audience, including computer scientists, computational and medicinal chemists, biologists, clinicians, pharmacologists and drug designers, to navigate the complex landscape of what is currently possible and to understand the challenges and future directions of HPC-based technologies.

https://link.springer.com/book/10.1007/978-1-0716-3449-3

There are no comments on this title.

to post a comment.


Copyright ©  2022 IIT Gandhinagar Library. All Rights Reserved.

Powered by Koha