Amazon cover image
Image from Amazon.com

Hot molecules & cold electrons: solving the heat equation and its surprising application to the amazing 19th century trans-Atlantic electric telegraph cable

By: Publication details: Princeton University Press, 2020. New Jersey:Description: xiii, 212 p. : ill. ; hb; 24 cmISBN:
  • 9780691191720
Subject(s): DDC classification:
  • 515.353 NAH
Summary: Heat, like gravity, shapes nearly every aspect of our world and universe, from how milk dissolves in coffee to how molten planets cool. The heat equation, a cornerstone of modern physics, demystifies such processes, painting a mathematical picture of the way heat diffuses through matter. Presenting the mathematics and history behind the heat equation, Hot Molecules, Cold Electrons tells the remarkable story of how a foundational idea brought about one of the greatest technological advancements of the modern era. Paul Nahin vividly recounts the heat equation's tremendous influence on society, showing how French mathematical physicist Joseph Fourier discovered, derived, and solved the equation in the early nineteenth century. Nahin then follows Scottish physicist William Thomson, whose further analysis of Fourier's explorations led to the groundbreaking trans-Atlantic telegraph cable. This feat of engineering reduced the time a message could be sent across the ocean from weeks to minutes. Readers also learn that Thomson used Fourier's solutions to calculate the age of the earth, and, in a bit of colourful lore, that writer Charles Dickens relied on the trans-Atlantic cable to save himself from a career-damaging scandal. The book's mathematical and scientific explorations can be easily understood by anyone with a basic knowledge of high school calculus and physics, and MATLAB code is included to aid readers who would like to solve the heat equation themselves. A testament to the intricate links between mathematics and physics, Hot Molecules, Cold Electrons offers a fascinating glimpse into a formative equation's relationship with one of the most important developments in human communication.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Books Books IIT Gandhinagar General Stacks General 515.353 NAH (Browse shelf(Opens below)) 1 Available 029677

Includes notes and index.

Heat, like gravity, shapes nearly every aspect of our world and universe, from how milk dissolves in coffee to how molten planets cool. The heat equation, a cornerstone of modern physics, demystifies such processes, painting a mathematical picture of the way heat diffuses through matter. Presenting the mathematics and history behind the heat equation, Hot Molecules, Cold Electrons tells the remarkable story of how a foundational idea brought about one of the greatest technological advancements of the modern era. Paul Nahin vividly recounts the heat equation's tremendous influence on society, showing how French mathematical physicist Joseph Fourier discovered, derived, and solved the equation in the early nineteenth century. Nahin then follows Scottish physicist William Thomson, whose further analysis of Fourier's explorations led to the groundbreaking trans-Atlantic telegraph cable. This feat of engineering reduced the time a message could be sent across the ocean from weeks to minutes. Readers also learn that Thomson used Fourier's solutions to calculate the age of the earth, and, in a bit of colourful lore, that writer Charles Dickens relied on the trans-Atlantic cable to save himself from a career-damaging scandal. The book's mathematical and scientific explorations can be easily understood by anyone with a basic knowledge of high school calculus and physics, and MATLAB code is included to aid readers who would like to solve the heat equation themselves. A testament to the intricate links between mathematics and physics, Hot Molecules, Cold Electrons offers a fascinating glimpse into a formative equation's relationship with one of the most important developments in human communication.

There are no comments on this title.

to post a comment.


Copyright ©  2022 IIT Gandhinagar Library. All Rights Reserved.

Powered by Koha