Amazon cover image
Image from Amazon.com

Riemannian manifolds: an introduction to curvature

By: Material type: BookBookSeries: Graduate texts in mathematics; vol.176Publication details: New York: Springer, 1997.Description: 224 p.: ill.; 24 cmISBN:
  • 9780387983226
Subject(s): DDC classification:
  • 516.373 LEE
Summary: This text is designed for a one-quarter or one-semester graduate course on Riemannian geometry. It focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced study of Riemannian manifolds. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics, and then introduces the curvature tensor as a way of measuring whether a Riemannian manifold is locally equivalent to Euclidean space. Submanifold theory is developed next in order to give the curvature tensor a concrete quantitative interpretation. The remainder of the text is devoted to proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and the characterization of manifolds of constant curvature.
List(s) this item appears in: Mathematics
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books IIT Gandhinagar 516.373 LEE (Browse shelf(Opens below)) Available 023640

Includes bibliographical references and index.

This text is designed for a one-quarter or one-semester graduate course on Riemannian geometry. It focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced study of Riemannian manifolds. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics, and then introduces the curvature tensor as a way of measuring whether a Riemannian manifold is locally equivalent to Euclidean space. Submanifold theory is developed next in order to give the curvature tensor a concrete quantitative interpretation. The remainder of the text is devoted to proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and the characterization of manifolds of constant curvature.

There are no comments on this title.

to post a comment.


Copyright ©  2022 IIT Gandhinagar Library. All Rights Reserved.

Powered by Koha